Konsep Kerja Proses dan Threads (Sistem Operasi)
A. PROSES
Proses adalah konsep pokok dari sistem operasi. Berbagai macam defnisi mengenai proses telah dicetuskan. Secara sederhana, proses adalah sebuah program yang dieksekusi. Proses merupakan unit kerja terkecil yang secara individu memiliki sumber daya-sumber daya dan dijadwalkan sistem operasi. Sistem operasi mengelola semua proses di sistem dan mengalokasikan sumber daya ke proses sesuai kebutuhan.
Secara informal; proses adalah program dalam eksekusi. Suatu proses adalah lebih dari kode program, dimana kadang kala dikenal sebagai bagian tulisan. Proses juga termasuk aktivitas yang sedang terjadi, sebagaimana digambarkan oleh nilai pada program counter dan isi dari daftar prosesor/ processor's register. Suatu proses umumnya juga termasuk process stack, yang berisikan data temporer (seperti parameter metoda, address yang kembali, dan variabel lokal) dan sebuah data section, yang berisikan variabel global.
Status Proses
Status Proses
Proses yang dieksekusi mempunyai lima status yang terdiri dari:
a. new: Pembentukan suatu proses
b. running: Instruksi-instruksi yang sedang dieksekusi
c. waiting: Proses menunggu untuk beberapa event yang terjadi
d. ready: Proses menunggu untuk dialirkan ke pemroses (processor)
e. terminated: Proses telah selesai dieksekusi
Gambar 1. Diagram status proses
Process Control Block (PCB)
Setiap proses digambarkan dalam sistem operasi oleh sebuah process control block(PCB), juga disebut sebuah control block. PCB berisikan banyak bagian dari informasi yang berhubungan dengan sebuah proses yang spesifik, termasuk hal-hal di bawah ini:
Setiap proses digambarkan dalam sistem operasi oleh sebuah process control block(PCB), juga disebut sebuah control block. PCB berisikan banyak bagian dari informasi yang berhubungan dengan sebuah proses yang spesifik, termasuk hal-hal di bawah ini:
- Status proses: status yang mungkin adalah new, ready, running, waiting, halted, dan seterusnya.
- Program counter: suatu penghitung yang mengindikasikan alamat dari instruksi selanjutnya yang akan dieksekusi untuk proses tersebut.
- CPU register: Register bervariasi dalam jumlah dan tipenya, tergantung pada arsitektur komputer. Register tersebut termasuk accumulator, index register, stack pointer,general-purposes register, ditambah informasi condition-code. Bersama dengan program counter, keadaan/status informasi harus disimpan ketika gangguan terjadi, untuk memungkinkan proses tersebut berjalan/bekerja dengan benar.
- Informasi manajemen memori: Informasi ini dapat termasuk suatu informasi sebagai nilai dari dasar dan batas register, tabel page/halaman, atau tabel segmen tergantung pada sistem memori yang digunakan oleh sistem operasi.
- Informasi pencatatan: Informasi ini termasuk jumlah dari CPU dan waktu nyata yang digunakan, batas waktu, jumlah account, jumlah job atau proses, dan banyak lagi.
- Informasi status I/O: Informasi termasuk daftar dari perangkat I/O yang di gunakan pada proses ini, suatu daftar berkas-berkas yang sedang diakses dan banyak lagi.
Gambar 2. Diagram PCB
B. THREAD
Proses merupakan sebuah program yang mengeksekusi thread tunggal. Kendali thread tunggal ini hanya memungkinkan proses untuk menjalankan satu tugas pada satu waktu. Banyak sistem operasi modern telah memiliki konsep yang dikembangkan agar memungkinkan sebuah proses untuk mengeksekusi multi-threads. Misalnya user melakukan pekerjaan secara bersamaan yaitu mengetik dan menjalankan pemeriksaan ejaan didalam proses yang sama. Thread merupakan unit dasar dari penggunaan CPU, yang terdiri dari Thread ID, program counter, register set, dan stack. Sebuah threadberbagi code section, data section, dan sumber daya sistem operasi dengan Thread lain yang dimiliki oleh proses yang sama. Thread juga sering disebut lightweight process. Sebuah proses tradisional atau heavyweight process mempunyai thread tunggal yang berfungsi sebagai pengendali. Perbedaannya ialah proses dengan thread yang banyakmengerjakan lebih dari satu tugas pada satu satuan waktu.
Pada umumnya, perangkat lunak yang berjalan pada komputer modern dirancang secara multithreading. Sebuah aplikasi biasanya diimplementasi sebagai proses yang terpisah dengan beberapa thread yang berfungsi sebagai pengendali. Contohnya sebuah web browser mempunyai thread untuk menampilkan gambar atau tulisan sedangkan thread yang lain berfungsi sebagai penerima data dari network.
Pada umumnya, perangkat lunak yang berjalan pada komputer modern dirancang secara multithreading. Sebuah aplikasi biasanya diimplementasi sebagai proses yang terpisah dengan beberapa thread yang berfungsi sebagai pengendali. Contohnya sebuah web browser mempunyai thread untuk menampilkan gambar atau tulisan sedangkan thread yang lain berfungsi sebagai penerima data dari network.
Terkadang ada sebuah aplikasi yang perlu menjalankan beberapa tugas yang serupa. Sebagai contohnya sebuah web server dapat mempunyai ratusan klien yang mengaksesnya secara concurrent. Kalau web server berjalan sebagai proses yang hanya mempunyai thread tunggal maka ia hanya dapat melayani satu klien pada pada satu satuan waktu. Bila ada klien lain yang ingin mengajukan permintaan maka ia harus menunggu sampai klien sebelumnya selesai dilayani. Solusinya adalah dengan membuat web server menjadi multi-threading. Dengan ini maka sebuah web server akan membuat thread yang akan mendengar permintaan klien, ketika permintaan lain diajukan maka web server akan menciptakan thread lain yang akan melayani permintaan tersebut [MDGR2006].
a. Single thread dan multi thread
1.Single thread: process hanya mengeksekusi satu thread saja pada satu waktu
2.Multi thread: process dapat mengeksekusi sejumlah thread dalam satu waktu
Gambar 3. Single thread dan multi thread
b. Model Multithreading
Dukungan thread disediakan pada tingkat user yaitu user threads atau tingka kernel untuk kernel threads. User Threads disediakan oleh kernel dan diatur tanpa dukungan kernel, sedangkan kernel therads didukung dan diatur secara langusng oleh sistem operasi. Hubungan antara user threads dan kernel threads terdiri dari tiga model relasi, yaitu:
- Model Many to One: Model Many-to-One memetakan beberapa thread tingkatan pengguna ke sebuah thread tingkatan kernel. Pengaturan thread dilakukan dalam ruang pengguna, sehingga efisien. Hanya satu thread pengguna yang dapat mengakses thread kernel pada satu saat. Jadi, multiple thread tidak dapat berjalan secara paralel pada multiprocessor. Thread tingkat pengguna yang diimplementasi pada sistem operasi yang tidak mendukung thread kernel menggunakan model Many-to-One.
Gambar 4. Model Many to One
- Model One to One: Model One-to-One memetakan setiap thread tingkatan pengguna ke thread kernel. Ia menyediakan lebih banyak concurrency dibandingkan model Many-to-One. Keuntungannya sama dengan keuntungan thread kernel. Kelemahannya model ini ialah setiap pembuatan thread pengguna memerlukan pembuatan thread kernel. Karena pembuatan thread dapat menurunkan kinerja dari sebuah aplikasi maka implmentasi dari model ini jumlah thread dibatasi oleh sistem. Contoh sistem operasi yang mendukung model One-to-One ialah Windows NT dan OS/2.
Gambar 5. Model One to One
- Model Many To Many: Model ini me-multipleks banyak thread tingkatan pengguna ke thread kernel yang jumlahnya lebih sedikit atau sama dengan tingkatan pengguna. thread. Jumlah thread kernel spesifik untuk sebagian aplikasi atau sebagian mesin. Many-to-One model mengizinkan developer untuk membuat user thread sebanyak yang ia mau tetapi concurrency (berjalan bersama) tidak dapat diperoleh karena hanya satu thread yang dapat dijadwal oleh kernel pada suatu waktu. One-to-One menghasilkan concurrency yang lebih tetapi developer harus hati-hati untuk tidak menciptakan terlalu banyak thread dalam suatu aplikasi (dalam beberapa hal, developer hanya dapat membuat thread dalam jumlah yang terbatas). Model Many-to-Many tidak mengalami kelemahan dari dua model di atas. Developer dapat membuat user thread sebanyak yang diperlukan, dan kernel thread yang bersangkutan dapat bejalan secara paralel pada multiprocessor. Dan juga ketika suatu thread menjalankan blocking system call maka kernel dapat menjadwalkan thread lain untuk melakukan eksekusi. Contoh sistem operasi yang mendukung model ini adalah Solaris, IRIX, dan Digital UNIX.
Tidak ada komentar:
Posting Komentar